Step of Proof: connex_iff_trichot
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
connex
iff
trichot
:
T
:Type,
R
:(
T
T
).
(
a
,
b
:
T
. Dec(
R
(
a
,
b
)))
(Connex(
T
;
x
,
y
.
R
(
x
,
y
))
{
a
,
b
:
T
.
strict_part(
x
,
y
.
R
(
x
,
y
);
a
;
b
)
Symmetrize(
x
,
y
.
R
(
x
,
y
);
a
;
b
)
strict_part(
x
,
y
.
R
(
x
,
y
);
b
;
a
)})
latex
by Unfold `guard` 0
latex
1
:
1:
T
:Type,
R
:(
T
T
).
1:
(
a
,
b
:
T
. Dec(
R
(
a
,
b
)))
1:
(Connex(
T
;
x
,
y
.
R
(
x
,
y
))
1:
(
a
,
b
:
T
.
1:
strict_part(
x
,
y
.
R
(
x
,
y
);
a
;
b
)
1:
Symmetrize(
x
,
y
.
R
(
x
,
y
);
a
;
b
)
1:
strict_part(
x
,
y
.
R
(
x
,
y
);
b
;
a
)))
.
Definitions
{
T
}
origin